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Chapter 3.1.2

EMERGENT MODELLING AS A PRECURSOR
TO MATHEMATICAL MODELLING

Koeno Gravemeijer _
Freudenthal Institute, & Langeveld Institute, Utrecht University, the Netherlands,
Email: koeno@fi.uu.ni

Abstract; This chapter discusses the relation between ‘emergent modelling’ and
‘mathematical modelling’. The former that has its roots in RME theory consti-
tutes the main theme of this chapter. It is argued that mathematical modelling
requires a preceding learning process, since it requires abstract mathematical
knowledge to construe a mathematical model. The emergent-modelling design
heuristic offers a means for shaping a series of modelling tasks that may foster
the development of that abstract mathematical knowledge. The emergent-
modelling heuristic is illustrated with an instructional sequence on data analy-
sis.

1. INTRODUCTION

Students often seem to have difficulties with applying the mathematics
they have learned. This problem may be described in various ways. One may
describe it, for instance, in terms of mathematical modelling: The problem
solver has to translate the given contextual problem into a mathematical
problem to make it assessable for mathematical tools and procedures. In do-
ing so, he or she construes a ‘mathematical model’ of the situation. In pri-
mary-school mathematics, solving word problems, offers a typical example
of this type of modelling (Verschaffel, Greer, & De Corte, 2002). This mod-
elling process can also be described as ‘abstraction’. It may be useful to note,
however, that abstraction, or abstracting, may refer to two very different
situations, (a) situations that concern the activity of solving a given problem,
and (b) situations that concern the long-term process of developing more
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abstract mathematical knowledge. In the former case students have to put
more formal, abstract knowledge to use by making connections between the
problem situation and that abstract knowledge. Here one often speaks of ‘re-
duction’, or, ‘cutting bonds with everyday-life reality’. In the latter case, that
of the long-term process, however, the central activity is that of ‘construc-
tion’. We may link the latter to the notion of ‘emergent modelling” — which
will be the topic of this contribution.

2. EMERGENT MODELLING

In contrast with the observed problems of students with mathematical
modelling, there are also many reports that students are very inventive and
successful when asked to solve novel, engaging, contextual problems. We
may mention in this respect, the work of Lesh (Lesh & Harel, 2003} on
model-eliciting activities, where the activity of the students is not so much
that of applying mathematical ideas but of developing new mathematical
ideas. The emergent modelling approach taps into the same potential, but
with a focus on long-term learning processes, in which a model develops
from an informal, situated model into a more sophisticated model. These
emergent models are seen as originating from activity in, and reasoning
about situations. From this perspective, the process of constructing models is
one of progressively reorganizing situations. The model and the situation
being modeled co-evolve and are mutually constituted in the course of mod-
elling activity.

Although emergent modelling is an activity of the students, the term
emergent modelling has it roots in the description of an instructional design
heuristic within the domain-specific instruction theory for realistic mathe-
matics education (RME). The ‘emergent-modelling” design heuristic (Grave-
meijer, 1999) was initially developed as an alternative for the common use
of what we may call ‘didactical models’, manipulative materials and visual
models that are meant to make abstract mathematics more accessible for the
students. Especially at the primary and lower secondary level, manipulative
materials and visual models are typically used as embodiments of mathe-
matical concepts and objects in mathematics education. The problem with
this kind of models, however, is that external representations do not come
with intrinsic meaning. From a constructivist perspective, it may be argued
that the meaning of external representations is dependent on the knowledge
and understanding of the interpreter. This implies that in order to interpret
these models correctly, students should already have at their disposal, the
knowledge and understanding that is to be conveyed by the concrete models
(Cobb, Yackel, & Wood, 1992). )



3.1.2. EMERGENT MODELLING - 139

The emergent-modelling design heuristic tries to circumvent this di-
lemma, by aiming at a dynamic process of symbolizing and modelling,
within which the process of symbolizing and the development of meaning
are reflexively related. The idea is that students start with modelling their
own informal mathematical activity. Then, in the process that follows, the
character of the model should change for the students. The model of their
informal mathematical activity is expected to gradually develop into a model
for more formal mathematical reasoning. In its latter form, the model may
function in a manner as was intended for the didactical models, but now as a
model that is rooted in the experiential knowledge of the students.

Mark that the model we are referring to is more an overarching concept
than one specific model. In practice, ‘the model’ in the emergent-modelling
heuristic is actually shaped as a series of consecutive sub-models that can be
described as a cascade of inscriptions or a chain of signification. From a
more global perspective, these sub-models can be seen as various manifesta-
tions of the same model. So when we speak of a shift in the role of the model
in the following, we are talking about ‘the model’ on a more general level.
On a more detailed level, this transition may encompass various sub-models
that gradually take on different roles.

The label ‘emergent’ refers both to the character of the process by which
models emerge within RME, and to the process by which these models sup-
port the emergence of formal mathematical ways of knowing. According to
the emergent-modelling design heuristic, the model first comes to the fore as
a model of the students’ situated informal strategies. Then, over time the
model gradually takes on a life of its own. The model becomes an entity in
its own right and starts to serve as a model for more formal, yet personally
meaningful, mathematical reasoning.

In relation to this, we can discern four different types or levels of activity
(Gravemeijer, 1999):

1. activity in the task setting, in which interpretations and solutions depend |
on understanding of how to act in the setting

2. referential activity, in which models-of refer to activity in the setting de-
scribed in instructional activities

3. general activity, in which models-for derive their meaning from a
framework of mathematical relations ‘

4. formal mathematical reasoning, which is no longer dependent on the
support of models-for mathematical activity.

These four levels of activity illustrate that models are initially tied to ac-
tivity in specific settings and involve situation-specific imagery; at the refer-
ential level, models are grounded in students’ understandings of paradig-
matic, experientially real settings. General activity begins to emerge as the
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students start to reason about the mathematical relations that are involved.
As a consequence, the model looses its dependency on situation-specific im-
agery, and gradually develops into a model that derives its meaning from the
framework of mathematical relations that the students construe in the proc-
ess. The transition from model-of to model-for coincides with a progression
from informal to more formal mathematical reasoning that is interwoven
with the creation of some new mathematical reality — consisting of mathe-
matical objects (Sfard, 1991) within a framework of mathematical relations.
Thus, the model-of/model-for transition is not tied to specific manifestations
of the model, instead, it relates to the student’s thinking, within which
‘model-of’ refers to an activity in a specific setting or context, and ‘model
for’ to a framework of mathematical relations.’

3. DATA ANALYSIS AS AN EXAMPLE

The emergent-modelling heuristic is elaborated in various research pro-
jects on a variety of topics. We will take one of those research projects to
illustrate the emergent modelling with a concrete example. This example
concerns a teaching experiment on data analysis, carried out by Cobb,
Gravemeijer, McClain and Konold in a 7th-grade classroom in Nashville
(USA) (see Cobb, 2002). Our point of departure was, that although user-
friendly data analysis software packages may seem to be the self-evident
accessories for exploratory data analysis, this is only true for experienced
data analysts, and not for students who still have to learn about data analysis.
In order to be able to use such software in a proficient manner, one has to be
able to anticipate what kind information one might be able to deduct from a
certain way of representing the data. Working with such data analysis soft-
ware packages therefore rather signifies an end point of the intended leaming
process, than a means of supporting it. We therefore turned to designing
software tools that can be used for exploratory data analysis on an elemen-
tary level. In fact, these so-called ‘minitools’ are so designed, that they can
support a process of progressive mathematization by which conventional
statistical concepts and representations are reinvented. What is especially
aimed for, is that the activity of structuring data sets with the minitools will
foster a process by which the students come to view data sets as entities that
are distributed within a space of possible values.

The visualizations offered by the minitools can be seen as manifesta-
tions of the same overarching model, which we may be describe as a graphi-
cal representation of the distribution of the data values.
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Figure 3.1.2-1. The life span of two brands of batteries.

The starting point is in visualizing the measures, or magnitudes, that con-
stitute the data set. With minitool 1, magnitude-value bars (Fig. I111.1.2-1) are
introduced, where each value bar signifies a single measure. This tool has
various tool options that can be used when analyzing data sets, such as a ver-
tical value bar to mark certain values, or to split the data set, and various op-
tions for sorting the data.

One of the first tasks concerns the comparison to the life spans of two
brands of batteries, Though Cell and Always Ready. The lif-span measures
of ten batteries of each brand are presented as value bars in the minitool (Fig.
3.1.2-1). When confronted with this problem, the 7"-grade students intro-
duced the term ‘consistency’ to argue that they ‘would rather have a consis-
tent battery (...) than one that you just have to try to guess’.We may interpret
this argument as referring to the shape of the distribution, which is visible in
the way the endpoints of the value bars are distributed in regard to the axis.
In relation to this, we may speak of a graphical representation of the distribu-
tion as a model of a set of measures.

In the discussions on distributions represented by value bars, the students
started to focus on the end points of value bars. As a consequence, these end
points came to signify the lengths of the corresponding value bars for them.
This allowed for the introduction of a line plot as a more condense (local)
model, that leaves out the value bars, and only keeps the end points (Fig.
3.1.2-2 next page). '

In Minitool 2 various tool options are made available to help the student
structure the distribution of data points on a line plot. One of the too! options
partitions a set of data points into four quartiles. The corresponding inscrip-
tion is in principle similar to the conventional box plot (see Fig. 3.1.2-3 next

page).
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Figure 3.1.2-2, Data on the speeds of cars before and after a speed trap

While working with the second minitool, the students started to use the
term ‘hill’ to denote the shape of the distribution. They did so for the first
time when they discussed the effect of a speed trap on the basis of data on
the speeds of cars before and after the speed trap (see Fig. 3.1.2-2). One of
the students used the following argumentation: ‘If you look at the graphs and
look at them like hills, then for the before group the speeds are spread out
and more than 55, and if you look at the after graph, then more people are
bunched up close to the speed limit which means that the majority of the
people slowed down close to the speed limit.’
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Figure 3.1.2-3. Four equal groups as precursor for the box plot.

Eventually the students started to use the four-equal-groups display of the
second mintool to reason about shape and density, The distance between two
vertical bars that mark a quartile were interpreted as indicating how much
the data are ‘bunched up’. Moreover, the median started to function as an
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indicator of ‘where the hill is’, for unimodal distributions. Finally, the stu-
dents started to treat distributions as entities with certain characteristics. In
this regard, we may describe the four-equal groups display as a graphical
representation of the distribution that started to function as a model for rea-
soning about distributions.

In the sequence, the model! initially comes to the fore as a model of a set
of measures. At first, the density-function aspect is rather implicit, although
the shape of a sorted magnitude-value-bar graph of minitool 1 can be inter-
preted as signifying variation in density. Gradually, however, density comes
more to the foreground, and in this manner, the model can become a model
for reasoning about various types of distributions. Not only does the distribu-
tion become an entity with certain characteristics, but the students also begin
to see relations between these characteristics. The normal distribution can be
taken as a typical example; the students may learn eventually that a normal
distribution is symmetrical, and that as a consequence, mean, median, mode,
and midrange coincide.

4. CONCLUSION

We started this chapter with the observation that students experience dif-
ficulties when they are expected to apply the mathematics they know, but are
good at tackling applied problems, if they feel challenged to invent novel
solutions. We believe that we can resolve this paradox by using emergent
modelling to shape mathematics education that prepares students for mathe-
matical modelling. The emergent-modelling instructional design heuristic is
based on the idea of sequencing modelling tasks in order to support a long
term process of ‘abstraction-as-construction’, within which students con-
strue mathematical knowledge that is grounded in their earlier informal ex-
perience, and which is meaningful, and applicable. In addition, the implied
modelling activity familiarizes them with a mathematical approach to every-
day-life situations. In this sense, modelling serves both as an instructional
goal and as a means of helping students reinvent mathematics, and preparing
them for ‘applications’ and ‘modelling’.
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