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CONTEXT PROBLEMS IN REALISTIC MATHEMATICS
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ABSTRACT. This article discusses the role of contexi problems. as they are used in
the Dutch approach that is known as realistic mathematics education (RME). In RME,
context problems are intended for supporting a reinvention process that enables students
to come to grips with formal mathematics. This approach is primarily described from an
instructional-design perspective, The instructional designer tries to construe a route by
which the conventional mathematics can be reinvented. Such a reinvention route will be
paved with context problems that offer the students opportunities for progressive math-
ematizing. Context problems are defined as problems of which the problem situation is
experientially real to the student. An RME design lor a calculus course is taken as an
example, to illustrate that the theory based on the design heuristic using context problems
and modeling, which was developed for primary school mathematics, also fits an advanced
topic such as calculus. Special attention is given to the RME heuristic that refer to the role
models can play in a shift from a medel of situated activity 10 a model for mathematical
reasoning. In light of this model-of/model-for shift, it is argued that discrete functions and
their graphs play a key role as an intermediary between the context problems that have to
be solved and the formal calculus that is developed.

I. INTRODUCTION

The role of context problems used to be limited to the applications that
would be addressed at the end of a learning sequence — as a kind of add on.
Nowadays. context problems have a more central role. They are endorsed
because of today’s emphasis on the usefulness of what is learned, and
because of their presumed motivational power. Context problems play a
more encompassing role in the Dutch approach that is known as realistic
mathematics education (RME). In RME context problems play a role from
the start onwards. Here they are defined as problems of which the problem
situation is experientially real to the student. Under this definition, a pure
mathematical problem can be a context problem too. Provided that the
mathematics involved offers a context. that is to say. is experientially real
for the student.

In RME, the point of departure is that context problems can function
as anchoring points for the reinvention of mathematics by the students
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themselves. Moreover, guided reinvention offers a way out of the generally
perceived dilemma of how to bridge the gap between informal knowledge
and formal mathematics. This issue is at the heart of this article: How can
we help students to come to grips with formal mathematics?

We will take a calculus course as an example, and show that in the
reinvention approach, the role of context problems and of symbolizing and
modeling are tightly interwoven. Actually. we build upon the work that
has been done on symbolizing and modeling in primary-school mathemat-
ics (Streefland, 1985; Treffers, 1991; Gravemeijer, 1994, 1999). We try to
show that the framework that has been developed for primary school can
also be used for such an advanced topic as calculus.

We start by following Tall’s critique on a formal approach to calculus
teaching, by explicating the problems of instruction based on formal lo-
gical analysis. Next we discuss some alternatives before moving on to an
elaboration of the RME approach.

The RME calculus sequence is inspired by the history of mathematics.
We will describe some elements of the history of calculus from the findings
at the Merton College in the 14th century until Galileo that are interesting
from an instructional design point of view. We argue that discrete func-
tions and their graphs played a key role as an intermediary between the
context problems that had to be solved and the formal calculus that was
being developed. We will finish with a discussion of the RME approach
of creating the opportunity to let formal mathematics emerge, instead of
trying to bridge a gap between formal and informal knowledge.

2. TRADITIONAL CALCULUS INSTRUCTION AND SOME
ALTERNATIVES

Traditional set up

According to Tall (1991), mathematicians tend to make a typical error
when they design an instructional sequence for calculus. The general ap-
proach of a mathematician is to try to simplify a complex mathematical
topic, by breaking it up in smaller parts, that can be ordered in a sequence
that is logical from a mathematical point of view. ‘From the expert’s view-
point the components may be seen as part of a whole. But the student may
see the pieces as they are presented, in isolation, like separate pieces of a
jigsaw puzzle for which no total picture is available.” Tall (1991, p. 17). It
may be even worse, if the student does not realize that there is a big picture.
The student may imagine every piece as an isolated picture, which will
severely hinder a synthesis. The result may be that the student constructs
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an image of each individual piece. without ever succeeding in bringing all
pieces together in one whole.

As an example, Tall describes a possible sequence for differentiation.
He presents the following line of reasoning. To be able to understand the
derivative f'(x), one has to have the concept of a limit at one’s disposal.
For, one has to take the limit of the difference quotient ( f(x+h)— f(x))/h
where h tends to zero. Thus the concept of a limit has to precede the
derivative. Furthermore, one might decide that it is easier to take the limit
in the case where x is fixed. The next step then would be to let x vary, to
introduce the idea of a derivative in this manner.

For the student, however, the introduction of the limit concept suddenly
appears for no reason, with all the cognitive problems this may bring. The
next big problem is in the shift from a limit with a fixed x to a varying x,
since taking a limit in one point is substantially different from perceiving
f'(x) as a function of which the values describe the gradient of a graph of
Sx).

Alternative approaches

A sensible alternative, according to Tall, would be to look for situations
that can function as informal starting points, from which cognitive growth
is possible. In this context, Tall (cited in Bishop et al., 1996) argues for
more emphasis on visualizing mathematical concepts and more enactive
experiences in mathematics education. The students should first experience
a qualitative, global, introduction of a mathematical concept. This qualitat-
ive introduction then should create the need for a more formal description
of the concepts involved. ‘Graphic calculus’ is such an alternative approach
developed by Tall (1985, 1986).

What is characteristic in Tall’s approach is the dynamical aspect. The
dominant perspective is that of a running variable. Here the graph plays a
central role: the graph is used to see how the dependent variable (e.g. y,
or f(x)) changes when the independent value (x) changes at a constant
rate. What is looked at primarily, are the changes in the dependent variable
and the rate of these changes, which can be described in terms of increase,
decrease, and gradient. This helps the students develop an intuitive feel
for the derivative. However, the notion of the derivative as a measure for
the rate of change stays rather implicit, since the primary focus is on the
gradient of the graph.

Tall (cited in Bishop et al., 1996, p. 314) observes that the problem for
a calculus course is in the transition from meaningful discussions based
on visual imagery to formal mathematical reasoning. Students interpret a
definition that is based on visual imagery as a description, as a model of




114

the picture, instead of a mathematical definition that can be used for formal
reasoning,

Maybe the visual exploration stands too much on its own. In Tall’s
proposal, the relationship between graphs and real-life phenomena is re-
stricted to a short introductory phase; for the main part, the functions and
graphs are contained in a mathematical world.

Linking authentic experience and a mathematical symbol system

In contrast to Tall, Kaput (1994a), emphasizes the relationship between
mathematical symbol systems like graphs and everyday reality.

The problem, in his view, is the gap between the island of formal math-
ematics and the mainland of real human experience. He elucidates this
gap with the difference between mathematical functions that are defined
by algebraic formulas, and empirical functions that describe everyday-life
phenomena. To underscore his point, he quotes Thomas Tucker’s rhetor-
ical question: ‘Are all functions encountered in real life given by closed
algebraic formulas? Are any?" (cited in Kaput, 1994a, 384). He observes
that most educational software available does not address this problem.
This, he argues, also holds for computer programs that link functions and
graphs. For, in terms of the island metaphor, both algebraic functions and
graphs of algebraic functions belong to the island of formal mathematics.

To attack the island problem, Kaput seeks situations where the students
can maximally exploit their own authentic experience to investigate, and
to come to grips with these formal representations. He tries to create such
a situation with software he is developing under the name of Math Cars.
The power of the device is in the internal linkage between the various dis-
play systems. In this way. the everyday experience of motion in a vehicle
can be linked to the formal graph representations. This linkage then offers
the students the opportunity to test the conjectures they develop about the
graphic representations.

We may note that Kaput takes the ready-made symbol system as point
of departure, which is consistent with his concept of a mathematical system
that is distinct from our everyday-life experience. Others, however, try to
help students develop or reinvent this symbol system themselves.

Inventing graphing

DiSessa, Hammer, Shern, and Kolpakowski (1991), who describe an in-
struction period where the students invented graphing, for instance, report
such an approach. Albeit, not as a result of ample instructional planning.
As a matter of fact, the invention process was more or less incidental. The
students had been programming simulations of real-life motions with a
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Logo-like turtle that left a trail of dots across the screen. Next, the stu-
dents were asked to come up with a paper-and-pencil way to represent
the motion story of one of the simulations they worked on. The solutions
of the students, that were to some extent inspired by the dot-track of the
computer simulation, formed the starting point for a series of discussions
and activities, in which a graph-type representation of this motion story
emerged.

While acknowledging that the guidance by the teacher may have in-
fluenced the invention process more than the notion of invention suggests
(DiSessa et al., 1991), we can argue that, if it would be possible to have
the students invent distance-time and speed-time graphs by themselves, the
dichotomy between formal mathematics and authentic experience Kaput
presupposes, would not arise. For the mathematical ways of symbolizing
would emerge in a natural way in the students’ activities, and the accom-
panying formal mathematics would be experienced as an extension of their
own authentic experience.

Following Meira (1995), we can take this line of thinking one step
further, by acknowledging a dialectical relation between notations-in-use
and mathematical sense making. According to this dynamic point of view,
it is in the process of symbolizing that symbolizations emerge and develop
their meaning. In this process, notational systems shape the very activities
from which they emerge, while at the same time, the activities shape the
meanings that emerge.

Discussion

Looking at the alternatives to traditional calculus instruction presented
above, we may discern the following characteristics. The overall goal is
to design an insightful instructional sequence. Furthermore, the students
should be given the opportunity to ground their understanding in their own
informal knowledge. Finally, the instruction should be based on the stu-
dents” own contributions to the teaching-learning process. We may discern
three different orientations within these alternatives:

— Helping the students to develop qualitative (generic) notions that can
function as a basis for their understanding;
—  Creating a learning environment where the students can come to grips
with the basic ideas by developing and testing hypotheses;
~ Fostering the (re)invention of calculus.
A difference between the first two and the third is that the first two try to

help the students bridge the gap between their informal knowledge and the
formal mathematics, where the third tries to transcend this dichotomy by
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aiming at a process in which the formal mathematics emerges from the
mathematical activity of the students. This is also the objective of RME,
where instructional design is aimed at creating optimal opportunities for
the emergence of formal mathematical knowledge.

3. GUIDED REINVENTION AND PROGRESSIVE MATHEMATIZATION

The underlying thread of all the alternative approaches is the belief that
learning mathematics should have the characteristics of cognitive growth,
and not of a process of stacking pieces of knowledge. This perspective
is consistent with a more general view that the way in which mankind
developed mathematical knowledge, is also the way in which individu-
als should acquire mathematical knowledge. A view that is, for instance,
advanced by Polya (1963), and Freudenthal (1973, 1991).

Freudenthal’s point of departure is in his critique of traditional math-
ematics education. He fiercely opposes what he calls an anti-didactical
inversion (Freudenthal, 1973), where the end results of the work of math-
ematicians are taken as the starting points for mathematics education. As
an alternative he advocates that mathematics education should take its
point of departure primarily in mathematics as an activity, and not in math-
ematics as a ready-made-system (Freudenthal, 1971, 1973, 1991). With
this adage, he has laid the foundation for RME. For him the core math-
ematical activity is ‘mathematizing’, which stands for organizing from a
mathematical perspective. Freudenthal sees this activity of the students as
a way to reinvent mathematics.

Note that the students are not expected to reinvent everything by them-
selves. In relation to this, Freudenthal (1991) speaks of guided reinvention:
for him, the emphasis is on the character of the learning process rather
than on invention as such. The idea is to allow learners to come to regard
the knowledge they acquire as their own private knowledge, knowledge
for which they themselves are responsible. The latter implies that certain
social norms (Yackel and Cobbh, 1996) have to be in place. For instance,
norms like: you do not learn mathematics by guessing what the teacher has
in mind, but by figuring things out for yourself.

According to Freudenthal, mathematizing may involve both mathem-
atizing everyday-life subject matter and mathematizing mathematical sub-
ject matter (Freudenthal, 1971). He does not see a fundamental difference
between the two activities. Therefore, education might start with math-
ematizing everyday-life subject matter. Reinvention, however, demands
that the students mathematize their own mathematical activity as well. In
relation to this, Treffers (1987) discerns horizontal and vertical mathem-
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atization. Horizontal mathematization refers to the process of describing a
context problem in mathematical terms — to be able to solve it with math-
ematical means. Vertical mathematization refers to mathematizing one’s
own mathematical activity. Through vertical mathematization, the student
reaches a higher level of mathematics. It is in the process of progress-
ive mathematization — which comprises both the horizontal and vertical
component — that the students construct (new) mathematics.

Freudenthal (1971, p. 417) expresses this as ‘the operational matter on
one level becomes a subject matter on the next level’, Although Freudenthal
has micro levels in mind, a connection ¢an be made with Sfard’s (1991)
more macroscopic account of mathematical development based on histor-
ical analyses. She observes that the history of mathematics can be charac-
terized as an ongoing process of reification in which processes are reinter-
preted as objects. One of the examples she gives is that of functions. They
firstly appear as calculational prescriptions. This process takes so much
attention that the character of the operations does not get much attention.
Gradually, however, distinctions are made, and various sorts of functions
are discerned. More and more, functions are treated as objects, with cer-
tain characteristics. Sfard’s analysis suggests that students will have to go
through the same process: students will only be in the position to grasp
the notion of a function as an object, if they have ample experience with
functions as procedures.

An instructional design perspective

In a reinvention approach. context problems play a key role, Well-chosen
context problems offer opportunities for the students to develop informal,
highly context-specific solution strategies. These informal solution proced-
ures then, may function as foothold inventions, or as catalysts for curtail-
ment, formalization or generalization. In short, in RME, context problems
are the basis for progressive mathematization. The instructional designer
tries to construe a set of context problems that can lead to a series of
processes of horizontal and vertical mathematization that together result
in the reinvention of the mathematics that one is aiming for. Basically, the
guiding question for the designers is: How could I have invented this? Here
the designer will take into account his/her own knowledge and learning
experience. Moreover, the designer can look at the history of mathematics
as a source of inspiration, and at informal solution strategies of students
who are solving applied problems for which they do not know the standard
solution procedures yet (see Streefland, 1990; and Gravemijer, 1994 for
examples).
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Figure 1. Solving 35 + ... = 64 on the empty number line
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Figure 2. Modeling 95 — |19 =95 —20+4 1.

Research on the design of primary-school RME sequences has shown,
that the concept of emergent models can function as a powerful design
heuristic (Gravemeijer, 1999). Here, the point of departure is in situation-
specific solution methods, which are then modeled. First context prob-
lems are selected that offer the students the opportunity to develop these
situation-specific methods. Then, if they do, these methods are modeled.
[n this sense. the models emerge from the activity of the students. Even if
the models are not actually invented by the students, great care is taken to
approximate student invention as closely as possible by choosing models
that link up with the learning history of the students. Another criterion is in
the potential of the models to support vertical mathematizing. The idea is
to look for models that can be generalized and formalized to develop into
entities of their own, which as such can become models for mathematical
reasoning.

As an example we may take an instructional sequence in which a ruler
comes to the fore as a model of iterating measurement units, and devel-
ops into a model for reasoning about mental computation strategies with
numbers up to 100 (Stephan, 1998; Gravemeijer, 1999). In this sequence,
the students measure various lengths by iterating some basic unit of meas-
urement, and a larger measurement unit consisting of ten basic units. This
measuring with ‘tens” and ‘ones’ is modeled with a ruler of 100 units,
made of units of ten and one. Then the activity of measuring is extended to
incrementing, decrementing and comparing lengths. These situations give
rise to counting strategies that are represented by arcs on a schematized
ruler or as an ‘empty number line’ (Whitney, 1988; Treffers, 1991) (see
Figure 1).

Eventually. the symbolizations on the empty number line representa-
tion will be used to explain and justify strategies like solving 95-19 by
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subtracting 20 and adding one (see Figure 2). In this manner, the number
line functions as a model for mathematical reasoning.

The shift from model/of to model/for concurs with a shift in the way
the student thinks about the model, from models that derive their meaning
from the modeled context situation, to thinking about mathematical rela-
tions. In the latter phase, thinking about number relations will dominate the
use of the number line. In relation to this, we can discern different types of
activity (Gravemeijer, 1994; Gravemeijer, Cobb, Bowers and Whitenack,
in press):

(1) activity in the task setting (measuring with units of ten and one)

(2) referential activity (interpreting positions on the ruler as signifying
results of iterating a measurement unit)

(3) general activity (using the ruler/number line to reason about compu-
tation methods)

(4) formal mathematical reasoning (reasoning with number relations with-
in the mathematical reality of a framework of number relations).

Note that, the term ‘'model” must be understood in a holistic sense. It is not
just the inscription’, but everything that comes with it that constitutes the
model in RME. Furthermore, the same model may encompass a cascade of
inscriptions (Lehrer and Romberg, 1996); e.g. from regular ruler to empty
number line, The label ‘emergent’ emphasizes the continuity in this pro-
cess. This label is also used to refer to the fact that the model emerges from
the activity of the students. In addition, the mathematics that one is aiming
for (e.g. the development of a framework of number relations), emerges in
the subsequent process.

We may note that the goal is not only to help the students elaborate their
informal understanding and informal solution strategies in such a manner
that they can develop more formal mathematical insights and strategies.
The objective is also to preserve the connection between the mathematical
concepts and that which these concepts describe. The students’ final un-
derstanding of the formal mathematics should stay connected with, or as
Freudenthal would say, should be ‘rooted in’, their understanding of these
experientially real, everyday-life phenomena.

In relation to this, we want to emphasize that we see modeling and
symbolizing as an integral part of an organizing activity that aims at com-
ing to grips with a problem situation. In other words, the development
of the model and of its constituting symbolizations/inscriptions go hand
in hand with the development of the mathematical conceptualization of
the problem situation. On one hand, the symbolization derives its mean-
ing from the situation that it describes. At the other hand, the way the
problem situation is perceived is highly influenced by the symbolization
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‘through which’ the situation is seen. In this sense, we agree with Meira
(1995, p. 270) who advocates a dynamic activity-oriented view, according
to which symbolizations and meaning co-evolve in a dialectic process.

In the following we want to try to cast the design of the RME cal-
culus course in terms of this emergent-models design heuristics. We will
start out by sketching a few important moments in the history of calculus.
Since, although reinvention does not necessarily imply that the history of
mathematics has to be the point of departure, this RME calculus course
happens to be an example of how inspiring the history of mathematics
can be for mathematics educators. Moreover, the history of calculus offers
some insight into what might be constituted as the emergent model in
calculus.

4. A HISTORICAL SKETCH

The emergence of kinematics at Merton College

In the first half of the 14th century logicians and mathematicians associ-
ated with Merton College, Oxford, investigated velocity as a measure of
motion. They tried to find a description of the distance traversed by a body
moving with a uniform accelerated motion (Clagett, 1959). This problem
was not easy because the velocity of the body constantly changes and
the concept of motion and change of motion was defined very generally
according to Aristotle. Change and motion referred to temperature, size
and place (Lindberg, 1992). All these qualities of a body could change.
The interpretation of motion as change of place became the central issue
studied at Merton College; Clagett describes this as ‘the emergence of
kinematics at Merton College’.

In those days the scientists at Merton College used the notion of in-
stantaneous velocity and descriptions of the velocity of a moving object.
But there was no clear definition of velocity such as: the distance covered
divided by the traversal time (As/A¢). And surely no definition of instant-
aneous velocity as a limit of this division (ds /dt), because they could only
work, in the tradition of Euclid, with proportions of equivalent units.

The most important result that was achieved is ‘Merton’s rule’: When
the velocity of an object increases with equal parts in equal time intervals
from zero to a velocity v in a time interval t, then the distance traveled is
equal to half the distance traveled by an object that moves with a constant
velocity v in that time interval t. In modern symbols s(t) = 1/2 - v - t.




Figure 3. Velocity represented hy the height of the rectangles.
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Figure 4. Oresme’s proof (pictures from a 15th century copy of Oresme’s ‘De configura-
tionibus qualitum” reprinted from Claget, 1959).

They added the conjecture that the distance covered in the first half
of such a motion is one third of the distance covered in the second half.
However, this appeared to be hard to prove.

The graph as a model of velocitv-time problems

It was Nichole Oresme (ca. 1360) who started to draw graphs of situations
in order to visualize the problem. He described how geometrical elements
like lines or rectangles can be used to represent the value of a variable:
the length of a line or the area of the rectangle represents the value of the
variable. These elements can be put along a horizontal line that represents
time,

When investigating the distance traveled by an object that moves with
constantly changing velocity Oresme knew that the velocity increases with
equivalent quantities in equivalent time intervals®. A graph where the velo-
city is represented by the height of a rectangle, and the chosen time interval
by the width of it, is shown in Figure 3.

Oresme could approximate the distance traveled in each time interval
by taking into account the length of the interval and the ‘constant’ velo-
city during the interval. The area of the rectangle represents this distance.
Oresme called the diagonal top-line of the graph, which results when you
choose the time-intervals very small, “the line of intensity’. He noticed that
it is a straight line and that the sum of the areas of all the rectangles is an
approximation of the area of the triangle between the line of intensity and
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the horizontal axis. As a result the distance traveled equals the area of the
triangle: 1/2 - v - t (Figure 4).

The power of this graphical representation comes to the fore when
you try to prove the hypothesis: the distance covered in the first half of
a uniformly accelerated motion is one third of the distance covered in the
second half. This can be deduced easily with the areas in the graph.

Galileo investigating free fall

The interesting fact of these results is that they dealt with abstract phe-
nomena. Kinematics was an argumentative science, not an experimental
science. It was Galileo in the seventeenth century that made the shift to
experimental physics. He conjectured that an object in free fall moved with
a constantly increasing velocity. He designed experiments with objects
moving with a uniform acceleration and applied the Merton rule to a real
motion.

Furthermore, Galileo gave an explanation for the quadratic relation
between time and distance, using sums and differences. He argued that
the ratio between the distance traveled in two equal time intervals is 1:3;
if you divide time into four equal intervals it is 1:3:5:7; and it continues
as such a ratio determined by a sequence of odd numbers. Galileo knew
that these sequences added up to a square and with this property he tested
his conjecture. He designed a slide with nails on one side. The distances
between the nails were proportional to the odd numbers above. It appeared
that a rolling ball needed the same time too pass each consecutive nail.

Galileo’s experiments confirmed that the falling distance increased lin-
early during each time-interval and from this result he concluded that the
relation between distance and time must be quadratic. The integral of the
linear function was thus found: an actual start with calculus was made. We
leave history here, to consider what we can learn from this.

Looking through the lens of emergent models

Looking at the history of calculus from a modeling perspective, we see a
development of calculus that starts with modeling problems about velocity
and distance. Initially these problems are tackled with discrete approxima-
tions, inscribed by discrete graphs. Later, similar graphs — initially discrete
and later continuous — form the basis for more formal calculus. From
a modeling perspective, we could say that graphs of discrete functions
come to the fore as models of situations, in which velocity and distance
vary, while these graphs later develop into models for formal mathematical
reasoning about calculus. In relation to this we can speak of a process of
reification. However, it is not the graph that is reified, it is the activity that is
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Figure 5. Sums and increments.

reified. E.g. the act of summing (differentiating) is reified, and becomes the
mathematical object “integral’ (*derivative’). The inscription — the graph —
visually supports both the activity and its reification.

We want to add that we do not take this notion of reification too literally
here. For many students, the end result will be something in between a
process and an object — especially in the case of calculus. To emphasize
that the underlying process will be an integral part of the mathematical
object that is developed in this manner, Tall (cited in Bishop et al., 1996)
uses the term “procept’. Moreover, it should be acknowledged that the de-
velopment will not be as linear as our description suggests. Students may
shift back and forth between process and object conceptions, depending on
the problems they have to solve.

In looking at the history of calculus, Kaput’s (1994b) characterization
of calculus as ‘the mathematics of change’ comes to mind. In the process of
trying to get a handle on change. the method of approximating a constant
changing velocity with the help of discrete functions plays a key role. In
a sense, the sum- and difference-series can be seen as a crude predecessor
of calculus. This idea can be exploited in instructional design by starting
the sequence with investigating discrete patterns. Moreover the mathem-
atics of sum- and difference-series offers the opportunity of reinventing a
discrete variant of the main theorem of calculus in an early stage.

Another aspect of the history that seems relevant for instructional design
is the embedding in the context of speed and distance. This seems to be
a context that is suited for high school students. For, in general, speed
is a concept they still grapple with. Moreover the idea of instantaneous
velocity seems to be more assessable than a seemingly simple concept
such as average speed.




5. RME CALCULUS COURSE

These deliberations are elaborated in a calculus sequence that is developed
for students of 1617 years, in science-oriented high school classes®. The
unit starts with activities on series. Properties of, and the relations between
series, their sums and their increments are investigated by the students (see
Figure 5). In this process, the students develop (algebraic) tools that can
be used for problems later on. Moreover, it is a first introduction to the
relationship between sums, summation symbols, increments and difference
symbols. The notion of limit is only used in an intuitive way until the end
of the unit.

The relationship between sums and differences is represented with the
introduced symbols by: An® = 2k + 1 and Y (2k + 1) = n”. These
properties are also visualized with graphs. In general the discrete case of
the main theorem is posed: AS(n) = D(k) and Z D(k) = S(n) — 5(0).
Students use graphic calculators when dealing with these investigations.
From graphs and tables they can deduce that A3" = 2 - 3* and, with the
theorem they can prove that 3 3* = 1/2(3" — 3").

After this discrete analysis the shift towards modeling of time/distance/
velocity is made. Note that a key element of the notion of emergent models
1s that the models first come to the fore as models of sitvations that are
experientially real for the students. It is in line with this notion that discrete
graphs are not introduced as an arbitrary Symbol System, but as models
of discrete approximations of a motion. Since the students are already
familiar with continuous graphs, an approach to graphing speed that is
not familiar to the students, is chosen. The point of departure is in the
medieval notion of instantaneous speed. The issue of symbolizing speed is
introduced in the context of a narrative about Galileo’s work. The students
are informed about the definition of instantaneous velocity in Galileo's
time in terms of the distance that is covered if the moving object maintains
its instantaneous velocity for a given period of time. In this context, the
problem is posed of how to visualize the motion of an object that moves
with varying speed. While struggling with this problem, the students may
come up with the idea of symbolizing instantaneous velocities with bars. If
not, this option may be presented to them, after they have been struggling
with this problem for a while.

As an aside, it may be noted that there will always be a tension between
a bottom-up approach that capitalizes on the inventions of the students and
the need, (a) to reach certain given educational goals, and (b) to plan in-
structional activities in advance. As a consequence, a top-down element is
inevitable in instruction. The key consideration for us, however, is that the
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Figure 6. A discrete approximation of a constani changing velocity.

students experience these top-down elements as bottom-up: as solutions
they could have invented for themselves. For the instructional designer,
this boils down to striving to keep the gap between ‘where the students
are’ and what is being introduced as small as possible. Furthermore, the
teachers will be able to reduce the gap in interaction with their students.

Returning to the content, we want to stress, that although the idea of
using bars (i.e. small rectangles) may be handed to the students, this does
not mean that there are no problems left to solve. A central problem is that
of coordinating the height and the width of the bars when using them to
visualize a discrete approximation of a movement.

Next, the topic of investigation will be the relation between the ‘area
of the graph’, and the total distance covered over a longer period of time.
Figuring this out demands of the students that they come to grips with the
relationship between the motion, the representation, and the approxima-
tion. The whole process, in which the way of modeling motion, and the
conceptualization of the motion that is being modeled, co-evolve, can be
seen as a form of guided reinvention that can be contrasted with learning
some rule which magically equates area with distance.

The students are told the story of Galileo, who presumed that the motion
of a free-falling object was with constantly increasing velocity. They are
asked to graph the discrete approximation of such a motion (see Figure 6).

Subsequently Galileo’s problem is posed: What distance is covered by
the object? Here, after solving the discrete approximations, the students are
expected to make the connection between the area of the discrete graph,
and the area of the triangle that is created by the continuous graph: s(1) =
(t x 101)/2 = 5t°. This resulting formula reveals the quadratic relation
between time and distance that Galileo used to test his hypotheses empir-
ically. With this calculation, the first step is made in a process in which the
attention shifts from describing motion, to calculating primitives,

After this introduction to integral calculus, students work on problems
that deal with differential calculus. That is, they have to determine velo-
cities from distance-time graphs and formulas. In subsequent activities,
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the model will begin to function as a model for reasoning about integ-
rating/differentiating arbitrary functions on the one hand, and of standard
algebraic functions on the other hand. At the same time, a shift is made
from problems cast in terms of everyday-life contexts to a focus on the
mathematical concepts and relations. To make such a shift possible for the
students, they will have to develop a mathematical framework of reference
that enables them to look at these types of problems mathematically (see
Gravemeijer, 1999). It is exactly the emergence of such a framework that
this sequence tries to foster.

In the envisioned process of progressive mathematization, symbolizing
and modeling play a key role. The central model is that of a discrete func-
tion, in combination with the inscription of a discrete graph. This model
is the basis for both integration and differentiation through sums and dif-
ferences. Although the discrete function can be seen as the backbone of
the model, the visual representation also plays an important role. In line
with Latour (cited in Meira, 1995) we would argue that the use of visual
representations helps one to focus on the mathematics.

6. DISCUSSION, CREATING MATHEMATICAL REALITY

The question we asked at the beginning of this article was: How can we
help students to come to grips with formal mathematics? Central in our
exposition was the RME approach. This approach distinguishes itself from
many other approaches, in that it tries to transcend the dichotomy between
informal and formal knowledge, by designing a hypothetical learning tra-
jectory along which the students can reinvent formal mathematics. Ideally,
the actual learning trajectory unfolds in such a manner, that the formal
mathematics emerges in the mathematical activity of the students. This
ideal is connected to Freudenthal’s (1991) contention that ‘mathematics
should start and stay within common sense’. Freudenthal intended this
adage to be interpreted dynamically and argued that common sense is not
static. He noted, for example, that what is common sense for a mathem-
atician differs significantly from what is common sense for a lay person. In
addition, he emphasized that common sense evolves in the course of learn-
ing. Thus, in the first phase of the sequence, describing momentary speed
in terms of the distance that would be covered in case of constant speed,
1s a common-sense activity. In a similar manner, a discrete approximation
of varying velocity can be seen as a common sense activity. By the end
of the sequence, acting in an environment structured in terms of areas and
gradients of graphs will have become common sense for the students.
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This development can also be taken to exemplify what is meant by
context problems in RME. As we indicated earlier, context problems are
defined as problem situations that are experientially real to the student.
The above example shows that this experiential reality grows with the
mathematical development of the student. Freudenthal explicates: ‘1 prefer
to apply the term ‘reality’ to that which at a certain stage common sense ex-
periences as real’ (Freudenthal, 1991, p. 17). This use of the term reality in
RME is highly compatible with Greeno’s (1991) environmental metaphor.
From this we conclude that the overall goal of instructional design is to
support the gradual emergence of a taken-as-shared mathematical reality.
If the students experience the process of reinventing mathematics as ex-
panding common sense, then they will experience no dichotomy between
everyday life experience and mathematics. Both will be part of the same
reality.

We may note a reflexive relation between the use of context problems
and the development of the student’s experiential reality. On the one hand,
the context problems are rooted in this reality, on the other hand, solving
these context problems helps the students to expand their reality. Notwith-
standing this dynamic character of reality that defines context problems.
starting points for instructional sequences will often link up with everyday-
life experience of students. It is precisely the connection with velocity
and distance that offers the students the means to reason and act in a
meaningful manner from the start.

NOTES

Following Lehrer and Romberg (1996) we use the term inscriptions to refer o
symbolizations that have physical form,

(2%

Some mathematicians argue that Oresme’s proof of Merton’s rule is not allowed.
First he should have defined velocity as a differential quotient and then deduced
the distance traversed by graphical integration. The mathematical historian Dijk-
sterhuis discusses this and defends Oresme by stating: It is a situation which occurs
regularly in the history of mathematics: mathematical concepts are often — maybe
even: usually — used intuitively for a long time before they can be described accur-
ately, and fundamental theorems are understood intuitively before they are proven
(Dijksterhuis, 1980).

The sequence is called Sum & Difference, Distance & Speed (Som & Verschil,
Afstand & Snelheid — Kindt, 1997). One of the chapters of this sequence is based
on a text of Polya on the history of Galileo (Polya, 1963). Our description does not
correspond with the existing unit in every detail, but anticipates certain revisions.




REFERENCES

Bishop, AJ., Clements, K., Keitel, Ch., Kilpatrick, J. and Laborde, C. (eds.): 1996,
International Handbook on Mathemarics Educarion, Kluwer Academic Publishers,
Dordrecht.

Clagett, M.: 1959, Science of Mechanics in the Middle Ages, The University of Wisconsin
Press, Madison.

Dijksterhuis, E.J.: 1980, De Mechanisering van het Wereldbeeld, MeulenhofT, Amsterdam.

DiSessa, A.A., Hammer, D., Sherin. B. and Kolpakowski, T.: 1991, *Inventing graphing:
meta-representational expertise in children’, Jowmnal of Mathemarical Behavior 10, 117
160.

Freudenthal, H.: 1971, *Geometry between the devil and the deep sea’. Educarional Studies
tin Mathematics 3, 413-435,

Freudenthal, H.: 1973, Mathematics as an Educational Task, D, Reidel, Dordrecht.

Freudenthal, H.: 1991, Revisiting Mathematics Education, Kluwer Academic Publishers.
Dordrecht.

Gravemeijer, K.: 1994, ‘Educational development and educational research in mathematics
education’, Journal for Research in Mathematics Education 25 (5), 443-471.

Gravemeijer, K.: 1999, ‘How emergent models may foster the constitution of” formal
mathematics’, Mathematical Thinking and Learning 1 (2), 155-177.

Gravemeijer, K., Cobb, P., Bowers, J. and Whitenack. I.: in press, “Symbolizing, modeling,
and instructional design’, in P, Cobb, E. Yackel and K. McClain (eds.). Communicating
and Symbolizing in Mathematics: Perspectives on Discourse, Tools, and Instructional
Design, Lawrence Erlbaum Associates, Mahwah, NJ.

Greeno. J.G.: 1991, ‘Number sense as situated knowing in a conceptual domain”, Journal
for Research in Mathematics Education 22, 170-218.

Kaput. 1.1.: 1994a, ‘The representational roles of technology in connecting mathematics
with authentic experience’, in R, Biechler, R.W. Scholz, R. Striifer, B. Winkelmann
(eds.), Didactics of Mathematics as a Scientific Discipline, Kluwer Academic Publishers,
Dordrecht. pp. 379-397.

Kaput, 11: 1994b. ‘Democratizing access to caléulus: new routes to old roots’. in
A.H. Schoenfeld (ed.), Mathematical Thinking and Problem Solving. Lawrence Erlbaum
Associates, Publishers, Hove, UK,

Kindi, M.: 1996, Som & verschil, afstand & snelheid. Differentiaal- en Integraalrekening
deel I, Freudenthal Institute, Utrecht,

Lehrer, R. and Romberg, T.: 1996, ‘Exploring children’s data modeling”, Cogmition and
Instruction 14, 69-108,

Lindberg, D.C.: 1992, The Beginnings of Western Science, The University of Chicago
Press. Chicago.

Meira, L.: 1995, ‘The microevolution of mathematical representations in children’s
activity', Cognition and Instruction 13 (2), 269-313.

Nemirovsky, R.: 1994, ‘On ways of symbolizing: The case of laura and velocity sign’,
Journal of Mathematical Behavior 13, 389422,

Nemirovsky: 1995, Personal communication.

Polya. G.: 1963, Studies in Marhematics, Volume X1, Mathematical Methods in Science,
School Mathematics Group, Stanford.

Sfard, A.: 1991, *On the dual nature of mathematical conceptions: Reflections on processes
and objects as different sides of the same coin’, Educational Studies in Mathematics 22,
1-36.




129

Streefland, L.; 1985, “Wiskunde als activiteit en de realiteit als bron’, Nieuwe Wiskrant, 5,
I, 60-67.

Streefland, L. 1990, Fractions in Realistic Mathematics Education, a Paradigm of
Developmental Research, Kluwer Academic Publishers, Dordrecht

Stephan, M.: 1998, Supperting the Development of One First-grade Classroom's Concep-
tions of Measurement: Analyzing Students’ Learning in Social Context, Unpublished
Doctoral Dissertation, Vanderbilt University, Nashville. TN.

Tall, D.O.: 1985, “The gradient of a graph’, Mathematics Teaching 111, 48-52.

Tall, D.O.: 1986, "A graphical approach to integration’, Mathemaricy Teaching 114, 48-51.

Tall, D. (Ed.y: 1991, Advanced Mathematical Thinking, Kluwer Academic Publishers,
Dordrecht,

Treffers, A.: 1987, Three Dimensions. A Model of Goal and Theory Description in
Mathematics Education: The Wiskobas Project. D. Reidel, Dordrecht

Treifers. A.: 1991, “Didactical background of a mathematics program for primary educa-
tion’. in L. Streefland (ed.), Realistic Mathematics Education in Primary School, CD-§
Press, Utrecht, pp. 21-57.

Whitney, H.: 1988, ‘Mathematical reasoning, early grades’, Princeton (unpublished paper).

Yackel, E. and Cobb, P.: 1996, *Sociomath norms, argumentation. and autonomy in
mathematics’, Journal for Research in Mathematics Education 27.

KOENO GRAVEMENER and MICHIEL DOORMAN
Freudenthal Institute,

Utrecht University,

The Netherlands

E-mail: koeno@ fi.ruu.nl




Copyright of Educational Studies in Mathematics is the property of Kluwer Academic
Publishing and its content may not be copied or emailed to multiple sites or posted to
a listserv without the copyright holder's express written permission. However, users
may print, download, or email articles for individual use.



