1. **OBJECTIVES**

The objectives or goals of the proposed project with respect to clarity and consistency with Industrial Commission/Lignite Research Council goals are: 1 - very unclear; 2 - unclear; 3 - clear; 4 - very clear; or 5 - exceptionally clear.

Reviewer 11-01 (Rating: 4)

EPA Maximum Utility MACT standard will likely increase the use of M26 and M26a regulatory compliance reductions of HAPs that could significantly increase costs associated with stack emission tests and verify and compliance using Method 29 and M26a. The compliance could require stack sampling as often as every 2 months at requiring personnel and complicated setup and recovery process for M29 and M26a emission monitors to measure emission concentrations, a significant part of the cost impact.

Participants at a recent national conference expressed a need for a simpler and more cost-effective method to obtain plant emission data to address the Utility MACT standard. The project team and the OhioLumex Company have developed a multi-element sorbent trap method that may reduce the complexity and cost of monitoring emissions, thus reducing costs.

The objective is to evaluate the EERC multi-element sorbent trap (ME-ST) at two lignite plants.

Reviewer 11-02 (Rating: 4)

The goal of this proposal is twofold: 1) to evaluate the EERC-developed ME-ST technology at two ND lignite-fired full-scale sites and 2) to provide metal and halogen emission data at these sites. In addition, the proposal identifies ten (10) specific objectives and five (5) work tasks designed to achieve these objectives.

These goals and objectives are consistent with NDIC/LRC goals. The goals of this project will help preserve existing jobs, ensure economic stability in the industry and State, and be conducted in an environmentally sound manner to protect the state’s air, water and soil resources.

The proposal does not associate specific proposal goals and objectives with specific NDIC/LRC goals and objectives.

Reviewer 11-03 (Rating: 3)

The objective of the proposal is to reduce the costs of regulatory compliance, and this is aligned with the goals of the NDIC. This is stated in the proposal, and the proposers say that they will estimate measurement costs as part of the proposal. However, no specific information is presented in the proposal to suggest that costs will be lower.

2. **ACHIEVABILITY**

With the approach suggested and time and budget available, the objectives are: 1 - not achievable; 2 - possibly achievable; 3 - likely achievable; 4 - most likely achievable; or 5 - certainly achievable.

Reviewer 11-01 (Rating: 4)

The project schedule and budget appears achievable. The proposers will identify two lignite-fired test sites.
Reviewer 11-02 (Rating: 4)

With the approach suggested the objectives are most likely achievable. The work tasks should be achievable. Some uncertainty may exist with the comparability of the EERC ME-ST data and the EPA M29 and M26a within acceptable tolerance. In addition some uncertainty may exist with the willingness of EPA to accept different or non-EPA methods.

Reviewer 11-03 (Rating: 2)

Twelve months should be sufficient to carry out two field campaigns, given that EERC personnel are very experienced at field sampling. No details of the budget are provided; thus, it is not possible to evaluate whether the objectives are achievable within the proposed budget. A ranking of “possibly achievable” is therefore given.

3. **METHODOLOGY**

The quality of the methodology displayed in the proposal is: 1 - well below average; 2 - below average; 3 - average; 4 - above average; or 5 - well above average.

Reviewer 11-01 (Rating: 4)

The EERC organization is a mature and organized group of engineers, chemists and support experts. The methodology, equipment and personnel are excellent. The objective will be to evaluate the EERC-developed ME-ST technology at two lignite plants using the OhioLumex sorbent plant to compare existing methods.

Reviewer 11-02 (Rating: 5)

The quality of the methodology displayed in this proposal is well above average. The proposal identifies overall and specific objectives and relates these objectives to specific work tasks and timeframes. In addition, the proposal identifies specific standards of success.

Reviewer 11-03 (Rating: 4)

The methodology for choosing sampling sites and carrying out the sampling and analysis is described in the proposal in sufficient detail. The methodology for making the proposed new measurement methods, which is apparently proprietary, is not described in sufficient detail to evaluate.

4. **CONTRIBUTION**

The scientific and/or technical contribution of the proposed work to specifically address Industrial Commission/LRC goals will likely be: 1 - extremely small; 2 - small; 3 - significant; 4 - very significant; or 5 - extremely significant.

Reviewer 11-01 (Rating: 4)

The EPA has proposed a Maximum Achievable Control Technology (MACT) for utility emissions that will require complex stack emission measurements. The Maximum MACT approach would increase plant costs due to the complexity of emission monitoring equipment and personnel. In general, such monitors are expensive and require skilled engineers. The OhioLumex sorbent trap may provide a less complex emission capture that would decrease cost and complexity of emissions monitoring that could provide a significant contribution to utilities.

Reviewer 11-02 (Rating: 5)

The proposal addresses a critical issue for the lignite industry. The scientific and technical contribution of the proposed work can be extremely significant. The proposed HAPS rules are extremely important to the industry.
Reviewer 11-03 (Rating: 2)

The objective of the proposal to reduce the costs of regulatory compliance, specifically by offering an alternative to making Method 29 and Method 26 measurements for metals and halogens, respectively. No quantitative information is presented to support this argument. Conceptually, the proposed method should be less expensive in terms of labor and materials than conventional impinge-based methods. However, it is difficult to evaluate these claims. Furthermore, it is not certain that a utility will have to use the impinger-based methods (Method 29 and Method 26) for compliance and therefore it is not certain that a utility will benefit from an alternative to impinger-based methods. The proposers should have provided more details on projected costs of using the proposed methods.

5. **AWARENESS**

The principal investigator's awareness of current research activity and published literature as evidenced by literature referenced and its interpretation and by the reference to unpublished research related to the proposal is: 1 - very limited; 2 - limited; 3 - adequate; 4 - better than average; or 5 - exceptional.

Reviewer 11-01 (Rating: 4)

Better than average. The PI and coworkers have published numerous lignite R&D research addressing lignite issues. The EERC R&D group is widely acknowledged by their national and international peers.

Reviewer 11-02 (Rating: 5)

The principal investigator’s awareness of current research activity and published literature is exceptional. EERC and CATM are leaders in this area. The PIs provide references and demonstrate an exceptional awareness in the Statement of Work and BACKGROUND sections of the proposal.

Reviewer 11-03 (Rating: 5)

The proposers are aware of the details of the proposed utility MACT rule and about the profile of emissions of metals and halogens from coal-fired power plants.

6. **BACKGROUND**

The background of the investigator(s) as related to the proposed work is: 1 - very limited; 2 - limited; 3 - adequate; 4 - better than average; or 5 - exceptional.

Reviewer 11-01 (Rating: 4)

The EERC Project Team lead by John Pavlish has an experienced and capable team with extensive experience with North Dakota power plants.

Reviewer 11-02 (Rating: 5)

The background of the investigators as related to this area of research is exception. EERC and CATM are leaders in this field.

Reviewer 11-03 (Rating: 5)

The investigators have considerable experience in making the required measurements and in carrying out field-sampling campaigns.
7. **PROJECT MANAGEMENT**

The project management plan, including a well-defined milestone chart, schedule, financial plan, and plan for communications among the investigators and subcontractors, if any is: 1 - very inadequate; 2 - inadequate; 3 - adequate; 4 - very good; or 5 - exceptionally good.

Reviewer 11-01 (Rating: 3)

The project management plan is adequate.

Reviewer 11-02 (Rating: 5)

The proposal is complete with a project management plan containing an Organization Chart, Statement of Work, Project Schedule, Milestones and Decision Points.

Reviewer 11-03 (Rating: 2)

The discussion of the planning and execution of the on-site testing is good. EERC has a good QA/QC plan in place, which will maintain the quality of the results. No details of the budget are provided; therefore, the project management plan is inadequate.

8. **EQUIPMENT PURCHASE**

The proposed purchase of equipment is: 1 – extremely poorly justified; 2 – poorly justified; 3 – justified; 4 – well justified; or 5 – extremely well justified. (Circle 5 if no equipment is to be purchased.)

Reviewer 11-01 (Rating: 5)

Note: Reviewer 11-01 provided no comments.

Reviewer 11-02 (Rating: 5)

Note: Reviewer 11-02 provided no comments.

Reviewer 11-03 (Rating: 5)

It appears that no equipment will be purchased, although this is not stated explicitly.

9. **FACILITIES**

The facilities and equipment available and to be purchased for the proposed research are: 1 – very inadequate; 2 – inadequate; 3 – adequate; 4 – notably good; or 5 – exceptionally good.

Reviewer 11-01 (Rating: 4)

The EERC group will typically provide in-house equipment. Additional in-kind cost will be provided by OhioLumex in the form of approximately 80 custom sorbent traps with an approximate value of $4,000. Testing will be conducted at the two lignite power plants.

Reviewer 11-02 (Rating: 5)

The facilities at EERC are exceptionally good.
Reviewer 11-03 (Rating: 4)

In general the facilities available at EERC are very good and well suited to executing the proposed work.

10. **BUDGET**

The proposed budget "value"\(^1\) relative to the outlined work and the financial commitment from other sources\(^2\) is of: 1 - very low value; 2 - low value; 3 - average value; 4 - high value; or 5 very high value.

Reviewer 11-01 (Rating: 5)

If the EERC R&D group is successful in reducing the cost of emission monitors and associated personnel, and reducing environmental impacts, the budget value would be high value.

The proposed budget is $573,000.

Reviewer 11-02 (Rating: 4)

The proposed budget is of a high value. The request from NDIC/LRC represents 41% of the total project.

Reviewer 11-03 (Rating: 3)

The financial commitment from other sources is considerable, which provides a high leverage on the requested funds from NDIC and which demonstrates a strong commitment from industry. However, in another sense it is difficult to evaluate the value of the proposed work, because no details are provided on the budget.

OVERALL COMMENTS AND RECOMMENDATION:

Please comment in a general way about the merits and flaws of the proposed project and make a recommendation whether or not to fund.

Reviewer 11-01 (Rating: FUND)

The EPA has proposed a Maximum Achievable Control Technology (MACT) for utility emissions that will require complex stack emission measurements. The Maximum MACT approach would increase plant costs due to the complexity of emission monitoring equipment and personnel.

EERC R&D OhioLumex have developed an approach to verify stack emission monitor accuracy and sampling apparatus has taken the emission samples using the EERC and OhioLumex sorbent traps.

General comments: FUND
Funding: Total: $573,000
NDIC - $235,120
DOE - $220,205
OhioLumex will provide 80 custom sorbents valued at $4,000
Utilities cost share TBD: $117,675

\(^1\) "Value" – The value of the projected work and technical outcome for the budgeted amount of the project, based on your estimate of what the work might cost in research settings with which you are familiar.

\(^2\) Financial commitment from other sources – A minimum of 50% of the total project must come from other than Industrial Commission sources to meet the program guidelines. Support greater than 50% from Industrial Commission sources should be evaluated as favorable to the application.
Reviewer 11-02 (Rating: FUND)

This proposal is exceptional. The proposal is well written, the Statement of Work well defined and the research team outstanding.

The proposal would be improved if the project cost benefit was demonstrated. How do the costs of the EPA methods and the proposed EERC techniques compare? The justification for the proposed work is based on the “need for simpler, more cost-effective methods to obtain the data required under the upcoming Utility MACT standard?” It is stated that the EERC “multielement sorbent trap (ME-ST) sampling method for traced metals and/or halogen emissions --- is much easier and robust,-- offering significant cost savings over the comparable EPA Methods 29 (M29) and 26a (M26a).” (See Proposal page 6)

What is the cost benefit of the EERC method? Will EPA accept the proposed EERC method?

Reviewer 11-03 (Rating: FUNDING MAY BE CONSIDERED)

The proposed measurement method appears to be novel and, if proven, could improve measurement methods and reduce the cost of compliance. However, the proposers do not make a convincing case for the cost reductions that could be achieved. This makes it difficult to assess the potential savings for compliance. Since these savings are the main justification for the proposed work providing value for the investment of NDIC funds, the reviewer cannot make a strong recommendation for funding this work.

The proposers have done pilot-scale sampling for metals and provided those data. The agreements between their method and Method 29 for individual metals are not compared quantitatively (and are presented on a semi-log scale). There are some significant differences that are obscured by a logarithmic scale. They do not discuss the method detection limits as compared with the proposed limits for individual metals in the utility MACT. This is an important part of the argument in favor of the method and it should be discussed.

The proposers do not present any data on halogen measurement with their proposed method. This makes the reviewer skeptical that this part of the method is ready for full-scale testing.

Technically, the proposed method does not seem to be ready for full-scale testing. The proposers have not shown any halogen data and the metals data show promising trends, but the agreement between the proposed method and Method 29 seems semi-quantitative. As noted above, a more quantitative discussion of the pilot-scale data might be more convincing. Both these factors, suggest to the reviewer that the method would benefit from additional pilot-scale testing, instead of field testing.

The value to NDIC is not strongly shown and the method does not appear to be at a stage of development (based on the data presented in the proposal) that is ready for full-scale testing. Therefore, the proposed program is not highly rated for funding.